Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice

نویسندگان

  • Jeffrey C. Lagarias
  • Hendrik W. Lenstra
  • Claus-Peter Schnorr
چکیده

Let Ai(L), Ai(L*) denote the successive minima of a lattice L and its reciprocal lattice L*, and let [b l , . . . , bn] be a basis of L that is reduced in the sense of Korkin and Zolotarev. We prove that [4/(/+ 3)]),i(L) 2 _< [bi[ 2 < [(i + 3)/4])~i(L) 2 and Ibil2An_i+l(L*) 2 <_ [(i + 3)/4][(n i + 4)/417~ 2, where "y~ =min(Tj : 1 < j _< n} and 7j denotes Hermite's constant. As a consequence the inequalities 1 < Ai(L)An_i+x(L* ) < n2/6 are obtained for n > 7. Given a basis B of a lattice L in R m of rank n and x E R m, we define polynomial time computable quantities A(B) and #(x, B) that are lower bounds for A1 (L) and/~(x, L), where/x(x, L) is the Euclidean distance from x to the closest vector in L. If in addition B is reciprocal to a Korkin-Zolotarev basis of L*, then AI(L) < 3,~A(B) n *2 X and #(x, L) 2 _< ( E i = l "ri )~( , B) 2-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Korkin{zolotarev Bases and Successive Minima

Let b 1 : : : b m 2 IR n be an arbitrary basis of lattice L that is a block Korkin{Zolotarev basis with block s i z e and let i (L) denote the successive minima of lattice L. and we present b l o c k Korkin{Zolotarev lattice bases for which this bound is tight. We i m p r o ve the Nearest Plane Algorithm of Babai (1986) using block Korkin{Zolotarev bases. Given a block Korkin{Zolotarev basis b ...

متن کامل

Application of lattice reduction block Korkin-Zolotarev method to MIMO-decoding

This article present a application of Block Korkin---Zolotarev lattice reduction method for Lattice Reduction---Aided decoding under MIMO---channel. We give a upper bound estimate on the lattice reduced by block Korkin---Zolotarev method (BKZ) for different value of the block size and detecting by SIC.

متن کامل

On the Complexity of Decoding Lattices Using the Korkin-Zolotarev Reduced Basis

Upper and lower bounds are derived for the decoding complexity of a general lattice L. The bounds are in terms of the dimension n and the coding gain of L, and are obtained based on a decoding algorithm which is an improved version of Kannan’s method. The latter is currently the fastest known method for the decoding of a general lattice. For the decoding of a point x, the proposed algorithm rec...

متن کامل

The implementation of the parallel shortest vector enumerate in the block Korkin-Zolotarev method

This article present a parallel CPU implementation of Kannan algorithm for solving shortest vector problem in Block Korkin-Zolotarev lattice reduction method. Implementation based on Native POSIX Thread Library and show linear decrease of runtime from number of threads.

متن کامل

Upper and lower bound on the cardinality containing shortest vectors in a lattice reduced by block Korkin-Zolotarev method (Russian)

This article present a concise estimate of upper and lower bound on the cardinality containing shortest vector in a lattice reduced by block Korkin-Zolotarev method (BKZ) for different value of the block size. Paper show how density affect to this cardinality, in form of the ratio of shortest vector size and sucessive minimal. Moreover we give upper estimate of cardinality for critical and Gold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1990